Asymmetric $Aza-[3 + 3]$ Annulation in the Synthesis of Indolizidines: An Unexpected Reversal of Regiochemistry

Grant S. Buchanan, Huifang Dai,* Richard P. Hsung,* Aleksey I. Gerasyuto, and Casi M. Scheinebeck

Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, United States

hdai5@wisc.edu; rhsung@wisc.edu

Received June 28, 2011

An enantioselective and diastereoselective aza-[3 $+$ 3] annulation of pyrrolidine-based exo-cyclic vinylogous amides and urethanes with chiral vinyl iminium salts is described. This asymmetric annulation manifold is possible because of an unexpected regiochemical reversal whereby head-to-tail annulations dominated over the predicted head-to-head. It should find prevalent synthetic applications in the enantioselective synthesis of indolizidines.

 $Aza-[3+3]$ annulations¹⁻⁶ have proven to be powerful in the rapid construction of nitrogen heterocycles via

(1) For reviews on *hetero*-[3 + 3] annulations, see: (a) Harrity, J. P. A.; Provoost, O. Org. Biomol. Chem. 2005, 3, 1349. (b) Hsung, R. P.; Kurdyumov, A. V.; Sydorenko, N. Eur. J. Org. Chem. 2005, 23.

(2) (a) Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.; Zhang, X.; Hsung, R. P. Tetrahedron 2006, 62, 10785. (b) Laschat, S.; Dickner, T. Synthesis 2000, 1781.

(3) For a symposium-in-print devoted to aza-annulations, see: Harrity, J. P. A. Tetrahedron 2008, 64, No. Symposium in Print No. 133.

(4) For some recent studies on $aza-3+3$ annulations, see: (a) Guo, H.; Xu, Q.; Kwon, O. *J. Am. Chem. Soc.* 2009, 131, 6318. (b) Jeanne Alladoum, J.; Toum, V.; Hebbe, S.; Kadouri-Puchot, C.; Dechoux, L. Tetrahedron Lett. 2009, 50, 617. (c) Zhong, W.; Lin, F.; Chen, R.; Su, W. Synthesis 2008, 2561. (d) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012. (e) Mancey, N. C.; Butlin, R. J.; Harrity, J. P. A. Synlett 2008, 2647. (f) Trost, B. M.; Dong, G. Org. Lett. 2007, 9, 2357. (g) Provoost, O. Y.; Hazelwood, A. J.; Harrity, J. P. A. Beil. J. Org. Chem. 2007, 3, 8.

(5) For recent reviews on applications of aza -[3 + 3] annulation in natural product synthesis, see: (a) Buchanan, G. S.; Feltenberger, J. B.; Hsung, R. P. Curr. Org. Chem. 2010, 7, 363. (b) Gademann, K.; Lawrence, A. K. Synthesis 2008, 331.

(6) Also see: Hsung, R. P.; Cole, K. P. In Strategies and Tactics in Organic Synthesis; Harmata, M., Ed.; Elsevier Science/Pergamon Press: Oxford, England, 2004; Vol. 4, pp 41-70.

(7) For leading reviews, see: (a) Tietze, L. F. Chem. Rev. $1996, 96, 115$. (b) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (c) Tietze, L. F. J. Heterocycl. Chem. 1990, 27, 47.

10.1021/ol2017438 C 2011 American Chemical Society Published on Web 07/25/2011

domino or iterative pathways.7 We have been developing an $aza-3+3$] annulation that proceeds through a tandem sequence of Knoevenagel condensation of vinylogous amides 1 and vinyl iminium ions 2, followed by pericyclic ring-closure of the resulting 1-azatrienes 3 [Scheme 1].⁸ This annulation constitutes a unified strategy that has been employed in a number of complex alkaloid syntheses.^{4,9} However, while achieving highly diastereoselective annulations through the use of chiral auxiliary $[X^*]^{10,11}$ or chiral substituents $[R^*]^{12}$ allowed us to establish the first examples of highly torquoselective pericyclic ring-closure of

ORGANIC **LETTERS**

2011 Vol. 13, No. 16 4402–4405

⁽⁸⁾ Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.; Douglas, C. J.; McLaughlin, M. J.; Mulder, J. A.; Yao, L. J. Org. Lett. 1999, 1, 509.

⁽⁹⁾ For our recent total syntheses, see: (a) Li, G.; Hsung, R. P. Org. Lett. 2009, 11, 4616. (b) Li, G.; Sagamanova, I. K.; Carlson, L. J.; Hsung, R. P.; Slafer, B.W.; Sklenicka, H. M.; Sydorenko, N.; Gilardi, C. Synthesis **2009**, 2905. (c) Zhang, Y.; Long, Q. A.; Gerasyuto, A. I.; Hsung, R. P. Synlett 2009, 237. (d) Li, G.; Hsung, R. P.; Slafer, B. W.; Sagamanova, I. K. Org. Lett. 2008, 10, 4991. (e) Gerasyuto, A. I.; Hsung, R. P. J. Org. Chem. 2007, 72, 2476. (f) Swidorski, J. J.; Wang, J.; Hsung, R. P. Org. Lett. 2006, 8, 777. (g) Gerasyuto, A. I.; Hsung, R. P. Org. Lett. 2006, 8, 4899.

⁽¹⁰⁾ Sklenicka, H. M.; Hsung, R. P.; Wei, L.-L.; McLaughlin, M. J.; Gerasyuto, A. I.; Degen, S. J.; Mulder, J. A. Org. Lett. 2000, 2, 1161.

⁽¹¹⁾ Sklenicka, H. M.; Hsung, R. P.; McLaughlin, M. J.; Wei, L.-L.; Gerasyuto, A. I.; Brennessel, W. W. J. Am. Chem. Soc. 2002, 124, 10435.

1-azatrienes,13,14 developing a successful asymmetric variant of this annulation had remained elusive.

In particular, the use of chiral amine salts $15,16$ has not been effective because the Knoevenagel sequence mechanistically embodies a premature loss of the chiral amine $[HNR^*_{2}]$; and thus, the stereochemical determining step [the ring-closure of 3] is deprived of an asymmetric inducing element in the absence of X^* or \mathbb{R}^* . The intramolecular annulation $[5\rightarrow 6]$ could be rendered asymmetric, as it circumvents this predicament with the asymmetric induction likely occurring during an $N-1,4$ -addition^{11,17} to chiral vinyl iminium ion.18 To succeed in an asymmetric intermolecular annulation, we must develop either an N-1, 4-addition [7] or C-1,4-addition [8] pathway.

The latter poses a challenge because our aza-annulation has predominately given the head-to-head $[$C=0$$

(13) For elegant workin this area, see: (a)Tanaka,K.;Katsumura, S. J. Am. Chem. Soc. 2002, 124, 9660. (b) Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura, S. J. Org. Chem. 2001, 66, 3099. (c) Tanaka, K.; Kobayashi, T.; Mori, H.; Katsumura, S. J. Org. Chem. 2004, 69, 5906.

(14) Okamura, W. H.; de Lera, A. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Paquette, L. A., Vol. Ed.; Pergamon Press: New York, 1991; Vol. 5, pp 699–750.

(15) For seminal reviews, see: (a) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (c) Erkkil€a, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. For a review on proline-catalyzed asymmetric reactions, see:(d) List, B. Tetrahedron 2002, 58, 5573. For a special edition, see:(e) Acc. Chem. Res. 2004, 37, No. 8.

(16) For some seminal work, see: (a) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874. (b) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. (c) Betancort, J. M.; Barbas, C. F., III Org. Lett. 2001, 3, 3737. (d) List, B. J. Am. Chem. Soc. 2002, 124, 5656. (e) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611. (f) Melchiorre, P.; Jorgensen, K. A. J. Org. Chem. 2003, 68, 4151. (g) Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1498. (h) List, B.; Hoang, L.; Martin, H. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5839. (i) Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 5962. (j) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2004, 43, 1112.

(17) Wei, L.-L.; Sklenicka, H. M.; Gerasyuto, A. I.; Hsung, R. P. Angew. Chem., Int. Ed. 2001, 40, 1516.

(18) (a) Gerasyuto, A. I.; Hsung, R. P.; Sydorenko, N.; Slafer, B. W. J. Org. Chem. 2005, 70, 4248. (b) Sydoreenko, N.; Zificsak, C. A.; Gerasyuto, A. I.; Hsung, R. P. Org. Biomol. Chem. 2005, 3, 2140.

(19) For descriptions of head-to-head and head-to-tail regiochemistry, see: Sydorenko, N.; Hsung, R. P.; Darwish, O. S.; Hahn, J. M.; Liu, J. J. Org. Chem. 2004, 69, 6732.

^a a All reactions were run in EtOAc [*concn* = 0.10 *M*] with 3.0 equiv Na₂SO₄. b Isolated yields. c Determined by CSP-HPLC. d Time: 30 h. e Time: 16 h.

and C=N aligned]¹⁹ regiochemical orientation shown in 7 leading to 1,2-dihydropyridines 4, but the annulation shown in 8 implies a reversal of regiochemistry in favor of the rare head-to-tail orientation.²⁰ We report herein our success in developing an asymmetric intermolecular $aza-3+3$ annulation due to an unexpected reversal of regiochemistry.

Our keen interest in indolizidine, quinolizidine, and other prevalent alkaloid scaffolds^{21,22} prompted the investigation into both an intermolecular annulation using exo-cyclic vinylogous amides and urethanes.23 We had found that pyrrolidine-based exo-cyclic vinylogous amides and urethanes such as 10^{24} and $11^{25,26}$ underwent efficient aza-[3] $+$ 3] annulation promoted by amine salt $9^{9c,11,18}$ to give the reasonably presumed indolizidines 13 and 14, respectively [Scheme 2]. Both 13 and 14 would represent a head-tohead regiochemical orientation in the annulation.

(23) Ghosh, S. K.; Buchanan, G. S.; Long, Q. A.; Wei, Y.; Al-Rashid, Z. F.; Sklenicka, H. M.; Hsung, R. P. Tetrahedron 2008, 63, 883.

(24) (a) Pendrak, I.; Wittrock, R.; Kingsbury, W. D. J. Org. Chem. 1995, 60, 2912. (b) Cheng, Y.; Zhao, M.; Wang, M.-X.; Wang, L.-B.; Huang, Z.-T. Synth. Commun. 1995, 25, 1339. (c) Park, K.-H.; Marshall, W. J. J. Org. Chem. 2005, 70, 2075.

(25) (a) Lacroix, S.; Rixhon, V.; Marchand-Brynaert, J. Synthesis 2006, 2327–2334. (b) Shiosaki, K. The Eschenmoser Coupling Reaction, Trost, B. M., Fleming, I., Eds.; Comprehensive Organic Synthesis; Pergamon: Oxford, 1991; Vol. 2, p 865. (c) Pinnick, H. W.; Chang, Y.-H. J. Org. Chem. 1978, 43, 4662.

(26) See Supporting Information.

⁽¹²⁾ Sydorenko, N.; Hsung, R. P.; Vera, E. L. Org. Lett. 2006, 8, 2611.

⁽²⁰⁾ The Hickmott-Greenhill-Stille aza-annulation is exclusively head-to-tail, see: (a) Hickmott, P. W.; Sheppard, G. J. Chem. Soc. C 1971, 2112. (b) Chaaban, J.; Greenhill, J. V.; Rauli, M. J. Chem. Soc., Perkin Trans. 1 1981, 3120. (c) Benovsky, P.; Stephenson, G. A.; Stille, J. R. J. Am. Chem. Soc. 1998, 120, 2493. (c) Paulvannan, K.; Stille, J. R. J. Org. Chem. 1992, 57, 5319.

⁽²¹⁾ For leading reviews see: (a) Michael, J. P. Nat. Prod. Rep. 1999, 16, 675–697. (b) Michael, J. P. Nat. Prod. Rep. 2000, 17, 579. (c) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139 and references cited therein. (d) Jones, T. H.; Gorman, J. S. T.; Snelling, R. R.; Delabie, J. H. C.; Blum, M. S.; Garraffo, H. M.; Jain, P.; Daly, J. W.; Spande, T. F. J. Chem. Ecology 1999, 25, 1179.

 (22) Also see: (a) Daly, J. W.; Garraffo, H. M.; Spande, T. F. The Alkaloids: Amphibian Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1993; Vol. 43, p 185. (b) Ayer, W. A.; Trifonov, l. S. In Lycopodium Alkaloids; Academic Press: San Diego, 1994. (c) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752.

Subsequently, we pursued these annulations with a number of chiral amines salts such as $15-16$ in part to examine the counteranion effect on the reaction rate. We had found that these annulations proceed at ambient temperature in good yields by employing trifluoroacetate as the counteranion, instead of acetate or halides.^{18a} Serendipitously, it turned out that while the yields were not particularly high, the products were found enantiomerically enriched with reasonable ee when using Mac-Millian's chiral imidazolidinone salts 17 and $18^{15,16,27}$ [entries 3 and 4, Scheme 2]. We were very surprised by this outcome, as we had believed that it was a head-to-head regiochemical orientation as usual, and rationalized that the low reaction temperature had preserved their optical integrity.

Consequently, we attempted the racemization via a sequence of ring-opening and ring-closure [Scheme 3], which represents another major impediment to developing asymmetric intermolecular aza-annulation, as 1,2-dihydropyridines are prone to such ring-opening process even at 50° C.¹¹ However, we found no racemization even after heating 13 at 140 °C for 48 h! This outcome and later X-ray assignment confirmed that 13 and 14 are in fact $aza-[3+3]$ annulation products representing a rare head-to-tail regiochemical orientation.¹⁹

Recognizing that this could prove to be an invaluable entry to enantioselective synthesis of indolizidine alkaloids,²¹ we proceeded to examine various factors to optimize this asymmetric reaction.²⁸ We quickly found that proline-based amines were more effective for asymmetric annulation.^{18a} Jørgensen's catalysts^{15,16,29} 20e-g with trifluoracetate as the counteranion provided the best enantiomeric excess [entries 5-7 in

Scheme 3. Unexpected Reversal in Regiochemistry Table 1. Optimization Employing Proline-Based Amine Salts^a

^{*a*} All reactions were run in EtOAc [*concn* = 0.10 *M*] with 1.4 equiv of enal 12 and 3.0 equiv of $Na₂SO₄$. ^bThe trifluoroacetate salts were all generated in situ by addition of 40 mol % TFA to the reaction mixture. Isolated yields. ^d Determined by CSP-HPLC.

Table 1]. Overall, steric bulk of the $R¹$ group on the tertiary hydroxyl and of the aryl moiety appeared to be critical for the asymmetric induction. Consequently, catalysts 20e and 20g, asymmetric intermolecular $aza-[3 + 3]$ annulations of *exocyclic vinylogous amide* 10, as well as urethanes 11 and 21 with a variety of enals were examined [Table 2]. Most proceeded to give indolizidines 27a-h in modest to good yields and enantioselectivity.

To unambiguously determine both the regioselectivity and stereochemistry of this annulation, we were left with the only option of attaining an X-ray structure. To this end, we synthesized chiral enal 28a from the acid of (S) naproxen and submitted it to our annulation conditions with vinylogous amide 10 using either achiral catalyst 9 or chiral catalyst 20e. While the intent was to isolate both diastereomers using 9 [56:44 see entry 1 in Table 3] and separate them for submission to the crystallization process, 29a and 29a" were unfortunately very difficult to separate.

Although chiral enals would give nonzero dr values, $12,23$ we observed a much enhanced diastereoselectivity of 11:1 for annulation product 29 when using chiral catalyst 20e [Table 3, entry 2]; and that ratio was reversed when using ent-20e [entry 3]. Another intriguing phenomenon was seen from the annulations of chiral enals 28b [entries 4 and 5] and 28c [entries 6 and 7] in which the diastereoselective ratio was reversed when using 9.While the high level of amplification in the stereoselectivity of the annulation of 28a should be useful, the observed "matched" and "mismatched" cases suggest that the asymmetric induction is dictated through the chiral amine.

The X-ray structure of 30 [hydrogenated 29a] allowed us to unambiguously determine both the regioselectivity

⁽²⁷⁾ For some recent work, see: (a) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027. (b) Borths, C. J.; Carrera, D. E.; MacMillan, D. W. C. Tetrahedron 2009, 65, 6746.

⁽²⁸⁾ Solvents have a noticeable effect on the enantioselectivity with EtAOc being the best solvent. Reactions [concn $= 0.10$ M] were run with 10, 1.4 equiv of 12, 3.0 equiv of $Na₂SO₄$ and 40 mol % of amine catalyst 20e at \angle RT for 3 h. Solvents were and the respective ee values evaluated were: benzene [ee 58%]; EtOAc [ee 70%]; CH_2Cl_2 [ee 48%]; THF [ee 42%]; acetone [ee 26%]; EtOH [30].

^{(29) (}a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794. (b) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. Also see:(c) Andersen, N. R.; Hansen, S. G.; Bertelsen, S.; Jørgensen, K. A. Adv. Synth. Catal. 2009, 351, 3193.

Table 2. Scope of the Asymmetric Aza-Annulation^{a}

^a All reactions were run in EtOAc [*concn* = 0.10 M] with 1.4 equiv of the respective enal, 3.0 equiv of $Na₂SO₄$ and 40 mol % of the amine catalyst. The TFA salts were generated in situ by addition of 40 mol $\%$ TFA to the reaction mixture. $\overset{b}{ }$ Isolated yields. $\overset{c}{ }$ Determined by CSP-HPLC. dObserved in crude ¹H NMR. ^e Not determined. Inseparable by CSP-HPLC.

and stereochemistry [Figure 1]. The matching of the derivatives of 30^{26} with the major enantiomer of 27d led to the assignment of its absolute configuration. Consequently, a model for the asymmetric induction could be reasonably proposed here, although a precise rationale behind the stereoselectivity amplification when using chiral aldehydes remains unknown to us. In addition, while we are not certain as to the reason for the regiochemical divergence in the annulations of *exo*-cyclic versus *endo*cyclic vinylogous amides, exo-cyclic ones have behaved precariously, leading to alternative and/or unexpected reactions pathways.³⁰ Nevertheless, we now finally possess a window for understanding how an asymmetric intermolecular $aza-3+3$] annulation can be achieved.

We have described here the first successful enantioselective $aza-[3 + 3]$ annulation of pyrrolidine-based *exo-cyclic viny*logous amides and urethanes with chiral vinyl iminium salts. This asymmetric aza-annulation manifold is possible because of an unexpected regiochemical reversal whereby head-to-tail annulations dominated over the predicted head-to-head. Further mechanistic understanding and applications in enantioselective synthesis of indolizidines are underway.

Acknowledgment. We thank the NIH [NS38049] for financial support. G.S.B. thanks the AFPE for a **Table 3.** Amplified Diastereoselective Aza-[3 $+$ 3] Annulation^a

^a All reactions were run in EtOAc [*concn* = 0.10 *M*] with 1.4 equiv of the respective chiral enal and 3 equiv of $Na₂SO₄$. ^b The TFA salt of 20e was generated in situ by addition of 40 mol % TFA to the reaction mixture. ^cThe two diastereomers are inseparable. ^dIsolated yields.
^e Ratios determined by crude ¹H NMR / Final (2.8 equiv) was used Ratios determined by crude ¹H NMR. ^f Enal (2.8 equiv) was used.

Figure 1. X-ray Structure of 30.

fellowship sponsored by Procter and Gamble Company. H.D. thanks China Scholarship Council for a Visiting Scholar Research Fellowship. We also thank Dr. Vic Young of University of Minnesota for providing X-ray structural data.

Supporting Information Available. Experimental procedures, X-ray data as well as NMR spectra and characterizations. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽³⁰⁾ Piperidine-based exo -cyclic vinylogous amides and urethanes surprisingly gave carbo- $[3 + 3]$ annulation products, leading to as quinolines synthesis [see ref 23]. Azepane-based exo-cyclic vinylogous amide gave 16% ee but very low yield in the annulation.